Stretching short biopolymers by fields and forces.
نویسندگان
چکیده
We study the mechanical properties of semiflexible polymers when the contour length of the polymer is comparable to its persistence length. We compute the exact average end-to-end distance and shape of the polymer for different boundary conditions, and show that boundary effects can lead to significant deviations from the well-known long-polymer results. We also consider the case of stretching a uniformly charged biopolymer by an electric field, for which we compute the average extension and the average shape, which is shown to be trumpetlike. Our results also apply to long biopolymers when thermal fluctuations have been smoothed out by a large applied field or force.
منابع مشابه
Mechanical unfolding of ubiquitin molecules.
Mechanical stretching of ubiquitin and of its several repeats are studied through molecular-dynamics simulations. A Go-type model [H. Abe and N. Go, Biopolymers 20, 1013 (1981)] with a realistic contact map and with Lennard-Jones contact interactions is used. The model qualitatively reproduces the experimentally observed differences between force-extension patterns obtained on polyubiquitins st...
متن کاملNematic field transfer in a two-dimensional protein fibril assembly.
We perform Atomic Force Microscopy and numerical simulations of a bimodal solution containing long, semiflexible β-lactoglobulin fibrils and short, flexible β-lactoglobulin linear aggregates at an air-water interface. Short aggregates orient perpendicular to fibrils at very short distances and preferentially parallel at intermediate distances. At even larger distances an isotropic distribution ...
متن کاملSteered molecular dynamics simulations of force-induced protein domain unfolding.
Steered molecular dynamics (SMD), a computer simulation method for studying force-induced reactions in biopolymers, has been applied to investigate the response of protein domains to stretching apart of their terminal ends. The simulations mimic atomic force microscopy and optical tweezer experiments, but proceed on much shorter time scales. The simulations on different domains for 0.6 nanoseco...
متن کاملBandpass filtering of DNA elastic modes using confinement and tension.
During a variety of biological and technological processes, biopolymers are simultaneously subject to both confinement and external forces. Although significant efforts have gone into understanding the physics of polymers that are only confined, or only under tension, little work has been done to explore the effects of the interplay of force and confinement. Here, we study the combined effects ...
متن کاملTheory of Biopolymer Stretching at High Forces.
We provide a unified theory for the high force entropic elasticity of biopolymers solely in terms of the persistence length, ξp , and the monomer spacing, a. When the force f>ℱ h ~ kBTξp /a2 the biopolymers behave as freely jointed chains (FJCs) while in the range ℱ l ~ kBT/ξp <f<ℱ h the worm-like chain (WLC) is a better model. We show that ξp can be estimated from the force extension curve (FE...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 75 4 Pt 1 شماره
صفحات -
تاریخ انتشار 2007